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In previous work, the Dirac and Einstein equations were unified in a tetrad
formulation of a Kaluza–Klein model which gives precisely the usual
Dirac–Einstein Lagrangian. In this model, the self-adjoint modes of the tetrad
describe gravity, whereas the isometric modes of the tetrad together with a scalar
field describe fermions. The tetrad Kaluza–Klein model is based on a constrained
Yang–Mills formulation of the Dirac Lagrangian in which the bispinor field C
is mapped to a set of SL(2, R) 3 U(1) gauge potentials AK

a and a complex scalar
field r. In this paper we generalize the map C → (AK

a, r) to multiplets of n
bispinor fields representing a fermion multiplet as in standard electroweak theory.
We show that the Lagrangian for bispinor multiplets used in the Standard Model
becomes a constrained Yang–Mills Lagrangian, for which the Higgs field
determines a noninvariant gauge metric, thereby breaking the full gauge symmetry.

1. INTRODUCTION

In previous work, the Dirac and Einstein equations were unified in a
tetrad formulation of a Kaluza–Klein model which gives precisely the usual
Dirac–Einstein Lagrangian [1, 2]. In this model, the self-adjoint modes of
the tetrad describe gravity, whereas the isometric modes of the tetrad together
with a scalar field describe fermions. An analogy can be made between the
tetrad modes and the elastic and rigid modes of a deformable body [1]. For
a deformable body, the elastic modes are self-adjoint and the rigid modes
are isometric with respect to the Euclidean metric on R3. This analogy extends
into the quantum realm since rigid modes satisfying Euler’s equation can be
Fermi quantized [3].

The tetrad Kaluza–Klein model is based on a constrained Yang–Mills
formulation of the Dirac theory [1–4]. In this formulation a bispinor field
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C is mapped to a set of SL(2, R) 3 U(1) gauge potentials AK
a and a complex

scalar field r. The map C → (AK
a, r) imposes an orthogonal constraint on

the gauge potentials AK
a which is explicated by the use of tetrads in the

Kaluza–Klein model [1, 2]. Via this map, the Dirac bispinor Lagrangian
equals the constrained Yang–Mills Lagrangian in the limit of an infinitely
large coupling constant [3, 4]. This limit in the Kaluza–Klein model is
equivalent to the radius of the higher compact dimensions becoming vanish-
ingly small even when compared to the Planck length [1, 2].

In a recent paper the tensor Dirac theory was generalized to the larger
SL(2, C ) 3 U(1) gauge group acting on bispinors, and it was shown that
each SL(2, R) 3 U(1) subgroup of SL(2, C ) 3 U(1) corresponds to a different
factorization of the second-order Klein–Gordon equation into a first-order
Dirac equation [5]. This symmetric formulation, which includes both the
Dirac and Majorana bispinor theories as special cases, was previously studied
using Clifford algebra techniques [6].

In this paper we generalize further by defining a map from multiplets
of n bispinor fields C 5 (C1, . . . , Cn) to tensor fields (AK

a, rj) where now
the AK

a are SL(2n, C ) 3 U(1) gauge potentials, and rj for 1 # j # n are
complex scalar fields. Apart from the exceptional set where the rj 5 0, the
map C → (AK

a, rj) is a double covering map onto its image. (Such double
covering maps have no observable effects [3, 4, 7].) The image of this map
contains only gauge potentials AK

a which are associated with an SU(n, n) 3
U(1) subgroup of SL(2n, C ) 3 U(1), and which satisfy an orthogonal con-
straint. [In the case n 5 1, note that SU(1, 1) > SL(2, R).] The restriction
to SU(n, n) 3 U(1) arises because the Dirac equation for bispinor multiplets
has only SU(n, n) 3 U(1) gauge symmetry, whereas the larger SL(2n, C ) 3
U(1) gauge group acts on the bispinor multiplets themselves. Noting from
Section 5 that electroweak gauge transformations form an SU(2) 3 U(1)
subgroup of SU(n, n), we show that the tensor fields (AK

a, rj) give a faithful
representation of the fermion sector of the Standard Model (e.g., the first
generation of quarks and leptons consisting of an up quark, down quark,
neutrino, and electron).

In previous work, we argued that quantum mechanics need only consist
of three parts: the classical field equations, field quantization, and rules for
applying the formalism to experiments [5]. Field quantization requires the
identification of the physically realizable solutions of the classical field equa-
tions, construction of a Hilbert space containing them, and definition of field
operators, which act on the Hilbert space and which preserve the coherent
subspaces defining the superselection rules. The field operators (including
the Hamiltonian operator) are thus restricted to act on physically realizable
states. As is the case for gauge bosons (e.g., when Feynman or Landau
gauge-fixing terms are added to the photon Lagrangian [8]), two classical
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Lagrangians are equivalent if all their observables are equal when restricted
to physically realizable solutions. For this reason it suffices to consider
classical tensor forms of fermion Lagrangians for which all observables equal
their bispinor version when restricted to physically realizable solutions. The
tensor form of the Standard Model Lagrangian for the fermion sector presented
in Section 5 is shown to satisfy this criterion of equivalence.

In the standard electroweak theory [9], the Higgs field selects, by its
orientation in the vacuum (i.e., its nonvanishing vacuum expected value),
the gauge transformations associated with the massive Z and W bosons and
the massless photon. However, we know that electromagnetic interactions
conserve parity, whereas weak interactions do not. Thus the parity map must
commute with electromagnetic gauge transformations, but not with the parity-
violating, weak gauge transformations. In this paper we will show that a one-
to-one correspondence exists between the vacuum orientations of the Standard
Model Higgs field and parity maps defined on C which is consistent with
the selection of the electroweak bosons. That is, selecting the Higgs field
orientation is equivalent to choosing the parity map acting on C, which
breaks the electroweak gauge symmetry by the following argument.

Because the Dirac gamma matrices gd do not commute with all electro-
weak gauge transformations, in order to understand the electroweak gauge
symmetry of the Standard Model, it is best to write the free-fermion Lagran-
gian using the original Dirac matrices ad 5 g0gd and b 5 g0 as follows [10]:

L 5 Re[iC+ad ­dC 2 o
n

j51
mjC+bjC] (1.1)

where mj for 1 # j # n is the jth fermion mass, ­d for d 5 0, 1, 2, 3 denote
the space-time partial derivatives acting on the bispinor multiplet field C 5
(C1, . . . , Cn), and C+ denotes the transpose conjugate of C in bispinor
notation. Also, we define the matrices bj 5 bpj , where pj is the projection
onto the jth flavor subspace (see Section 5).

Note that b 5 (n
j51 bj equals the parity map P acting on the bispinor

multiplet C. Whereas the matrices ad commute with all electroweak gauge
transformations, the matrices b and bj do not. To make the Lagrangian (1.1)
invariant for all electroweak gauge transformations, the Standard Model
defines the restricted parity maps bj to be functions of the Higgs field [9].
In Section 5, using the one-to-one correspondence between the Higgs field
orientations and the parity maps, we show that selecting the Higgs field is
equivalent to choosing the parity map P and hence to selecting the matrices
bj in the Lagrangian (1.1).

Previously only restrictions on the Higgs field arising from interactions
with bosons have been explicitly considered [9]. However, the fermion
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Lagrangian (1.1) imposes additional constraints on the Standard Model Higgs
field. In Section 4 we prove that parity maps are in one-to-one correspondence
with unitary symplectic forms. Thus, linking the Higgs field to the parity
map constrains the Higgs field to have a symplectic structure from which
we can classify all possible Higgs field–fermion couplings as described in
Section 5. This property of the Standard Model Higgs field, arising from
interaction with fermions as in the Lagrangian (1.1), was not previously
recognized.

Also, in the literature there is little if any mention of the effect of the
parity map P on the tensor observables associated with a bispinor multiplet
C. In Section 5, it is shown by the map C → (AK

a, rj) that the bispinor parity
map P transforms the tensor fields (AK

a, rj) as follows:

AK
a →P

Aa
K 5 gJK gab AJ

b
(1.2)

rj →P
rj

where the bars denote complex conjugation. Note that in formula (1.2) the
space-time index a is lowered and raised using the space-time metric gab

and its inverse gab, whereas the gauge index K is lowered and raised using
the gauge metric gJK and its inverse g JK. We see from formula (1.2) that both
gJK and gab depend on the choice of parity map P. We further show that
while for all choices of parity maps gab can only be the Minkowski space-
time metric, the gauge metric gJK depends covariantly on the Higgs field,
whose vacuum orientation is in one-to-one correspondence with parity maps
acting on C. Thus, while the rj are defined as invariant scalar fields, both
AK

a and gJK transform covariantly under electroweak gauge transformations,
making the Yang–Mills Lagrangian for (AK

a, rj) invariant. Broken symmetry
is therefore manifested in the tensor Dirac theory by the dependence of the
gauge metric gJK on the Higgs field.

In Section 2 we review the derivation which demonstrates that the Dirac
bispinor Lagrangian equals a constrained Yang–Mills Lagrangian in the limit
of an infinitely large coupling constant. Starting from trace formulas for the
Pauli matrices, we derive Fierz identities, first for spinors in Section 3 then
for multiplets of 2n spinors in Section 4. In Section 5 the tensor form of the
fermion Lagrangian in standard electroweak theory is derived. In Section 5
we also discuss the close tie of the Higgs field with the fermion structure,
including mass, as well as flavor superselection in the tensor Dirac theory.

Having discussed the equivalence of the tensor and bispinor forms
of the fermion Lagrangian used in the Standard Model, we conclude this
introduction with some remarks about the importance of the classical tensor
forms of fermion Lagrangians to the foundations of quantum field theory.
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As previously stated, the tensor form of Dirac’s bispinor Lagrangian describes
a tetrad together with a scalar field in a Kaluza–Klein model which unifies
fermions and gravity. The use of tetrads to describe gravity has a long history
[11], which includes coupling with the Dirac field as a source [12]. However,
introducing a tetrad to describe both fermion and gravitational fields solves
an important problem posed by current theories of fermion–graviton interac-
tion. To define bispinors, reference tetrad fields or their equivalent must be
defined on the space-time manifold [13]. In supersymmetric theories these
tetrad fields have been treated as purely boson fields with superfluous degrees
of freedom [14]. In the Kaluza–Klein tetrad model the reference tetrads
themselves are the fundamental fields which describe both fermions and
gravity, without superfluous degrees of freedom [1]. This suggests a simplifi-
cation of the dynamical variables used in quantum gravity [15].

2. TENSOR FORM OF THE DIRAC LAGRANGIAN

In previous papers we derived the tensor form of Dirac’s bispinor Lagran-
gian and reviewed the history of such derivations by Takahashi and others
[1, 5, 16]. To introduce the notation needed for the remainder of this paper,
we will briefly review in this section the derivation which demonstrates
that the Dirac bispinor Lagrangian (2.4) equals the constrained Yang–Mills
Lagrangian (2.14) in the limit of an infinitely large coupling constant. (In
Kaluza–Klein geometry this limit is equivalent to the radius of the higher
compact dimensions being very small compared to the Planck length [1].)
In addition, we will show how all bispinor observables (e.g., the energy-
momentum tensor Tab, spin polarization tensor Sabg, and the electric current
vector Ja for the Dirac bispinor field C) can be derived directly from well-
known Yang–Mills formulas.

The derivation proceeds from the SL(2, R) 3 U(1) gauge symmetry of
Dirac’s bispinor Lagrangian. Consider the SL(2, R) 3 U(1) gauge transforma-
tions, acting on the bispinor field C, with infinitesimal generators tK for K 5
0, 1, 2, 3 defined by

t0C 5 2iC, t1C 5 iCC

t2C 5 CC, t3C 5 ig5C (2.1)

where (using bispinor notation) CC denotes the charge conjugate of C and
g5 is the fifth Dirac matrix [10]. Note that the action of SL(2, R) 3 U(1) on
C is real linear, whereas usually only complex linear gauge transformations
of bispinors are considered. The infinitesimal gauge generators t0, t1, and t2

generate SL(2, R) and t3 generates U(1).
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The SL(2, R) 3 U(1) gauge transformations generated by tK commute
with Lorentz transformations [10]. From formula (2.1) the commutation
relations of the gauge generators tK are given by

[t0, t1] 5 2t2

[t0, t2] 5 22t1 (2.2)

[t1, t2] 5 22t0

and t3 commutes with all the tK. Formula (2.2) can be written more com-
pactly as

[tJ , tK] 5 2f L
JKtL (2.3)

which defines the Lie algebra structure constants f L
JK for the gauge group

SL(2, R) 3 U(1).
By formula (2.2), the Minkowski metric gJK (with diagonal elements

{1, 21, 21, 21} and zeros off the diagonal) is an invariant metric [17] for
the gauge group SL(2, R) 3 U(1). Gauge indices J, K, L will be lowered
and raised using the Minkowski metric gJK and its inverse gJK. As in formula
(2.3), repeated indices are to be summed from 0 to 3.

Dirac’s bispinor Lagrangian L is given by

L 5 Re[iCga ­aC 2 ms] (2.4)

where s is the complex scalar field defined by

Re[s] 5 CC

Im[s] 5 iCg5C (2.5)

where (using bispinor notation) C 5 C+g0, where C+ denotes the transpose
conjugate of C, and ga for a 5 0, 1, 2, 3 are Dirac matrices [10]. Moreover,
in formula (2.4), m denotes the fermion mass and ­a denote partial derivatives
with respect to space-time coordinates. Tensor indices a, b, g are lowered
and raised using the Minkowski space-time metric, which we denote as gab,
and its inverse gab.

Apart from the mass term, Dirac’s bispinor Lagrangian is invariant under
the SL(2, R) 3 U(1) gauge transformations (2.1). From formula (2.5) the
scalar s is invariant under SL(2, R) gauge transformations, and transforms as
a complex scalar under the U(1) gauge transformations generated by t3.
To make the Lagrangian (2.4) invariant for all SL(2, R) 3 U(1) gauge
transformations, it suffices that m transform like s (the complex conjugate
of s). Since m appears in the Lagrangian (2.4) without derivatives, the assump-
tion that m transform like s under U(1) gauge transformations has no effect
on the Dirac equation.
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From the Dirac Lagrangian (2.4) we can derive the following SL(2, R)
3 U(1) Noether currents:

jK
a 5 Re[iCgatKC] (2.6)

The Noether currents jK
a and scalar s satisfy an orthogonal constraint, a Fierz

identity [5, 16] (this will be generalized in Section 4 for bispinor multiplets):

jK
a jKb 5 .s.2gab (2.7)

Takahashi [16] derived the following formula for the kinetic part of the
Dirac Lagrangian (2.4):

Re[iCga­aC] 5 2
1

4.s.2 Re[(­aJb) ? Ja 3 Jb 2 2isJ 0
a ­as] (2.8)

which uses the following notation (which differs from Takahashi’s):

JK
a 5 (J 0

a, Ja) 5 (2j 3
a, 2ij 2

a, ij 1
a, 2j 0

a) (2.9)

Thus, from Takahashi’s formula (2.8), we see that the Dirac Lagrangian (2.4)
can be expressed entirely in terms of the Noether currents jK

a and the complex
scalar field s, satisfying the orthogonal constraint (2.7). Formula (2.8) is
derived from first principles in ref. 5. Once the SL(2, R) 3 U(1) gauge
symmetry of formula (2.8) is recognized, the demonstration that Dirac’s
bispinor Lagrangian (2.4) equals a constrained Yang–Mills Lagrangian in
the limit of an infinitely large coupling constant is fairly obvious.

Indeed, we can map a subset of SL(2, C ) 3 U(1) gauge potentials AK
a

and a complex scalar field r into (JK
a, s) by setting

J K
a 5 4.r.2AK

a
(2.10)

s 5 4.r.2r

Since we regard the Lie algebra of SL(2, C ) as the complexification of the
Lie algebra of SU(2), the SL(2, C ) gauge potentials Aa 5 (A1

a, A2
a, A3

a) are
complex, while the U(1) gauge potential A0

a is real. By formula (2.9) the
gauge potentials AK

a are restricted to the subset for which

Re[A1
a] 5 Re[A2

a] 5 Im[A3
a] 5 0 (2.11)

This subset corresponds precisely to an SL(2, R) 3 U(1) subgroup of the
gauge group SL(2, C ) 3 U(1). On substituting formula (2.10) into Takahashi’s
formula (2.8), Dirac’s Lagrangian (2.4) becomes

L 5 2Re[(­a Ab) ? Aa 3 Ab 1 2ir A0
a ­ar 1 4m .r.2r] (2.12)

and the orthogonal constraint (2.7) becomes



2640 Reifler and Morris

AK
aAKb 5 2.r.2gab (2.13)

Consider the following Yang–Mills Lagrangian Lg for the gauge
potentials AK

a and the complex scalar field r:

Lg 5 21–4 Re[AK
ab Aab

K ] 1 Da(r 1 m)Da(r 1 m) 2 1–2 g2.r.4 (2.14)

where AK
ab 5 (A0

ab, Aab) and

A0
ab 5 ­a A0

b 2 ­b A0
a

Aab 5 ­a Ab 2 ­b Aa 2 gAa 3 Ab

Da(r 1 m) 5 ­ar 1 igA0
a(r 1 m) (2.15)

where g denotes the Yang–Mills coupling constant and m 5 (2/g)m, where
m is the fermion mass. From formulas (2.12) and (2.13), Dirac’s bispinor
Lagrangian (2.4) equals

L 5 lim
g→`

g21Lg (2.16)

Note that the Euler–Lagrange equation for the Lagrangian (2.14) with
the constraint (2.13) expressed using Lagrange multipliers commutes with
the restriction (2.11). Hence, the Aa can be used to denote either SL(2, C )
or the subset of SL(2, R) gauge potentials. By regarding SL(2, R) as embedded
in the complex analytic group SL(2, C ), we are able to use familiar vector
operations to express the Lie algebra structure constants in formulas (2.12)
and (2.15). The vector operations greatly simplify derivations.

Note also from the Lagrangian (2.16) that we can derive all bispinor
observables (e.g., the energy-momentum tensor T ab, spin polarization tensor
Sabg, and the electric current vector Ja) directly from the Yang–Mills formulas.
For example, the Dirac spin polarization tensor Sabg is usually expressed in
bispinor notation as

S abg 5 1–4 C(gasbg 1 sbgga)C (2.17)

where sab 5 (i/2)(gagb 2 gbga). Using the identity [10]

gasbg 1 sbgga 5 22 εabgdgdg5 (2.18)

together with formulas (2.1), (2.6), (2.7), (2.9), and (2.10), we reduce formula
(2.17) to

Sabg 5 21–2 εabgd Cgdg5C 5 1–2 εabgd J 0
d

5 2.r.2 εabgd A0
d 5 2Aa ? Ab 3 Ag (2.19)

The Yang–Mills version of the spin polarization tensor is easily shown from
formula (2.14) to be
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Sabg
g 5 Re[Aab

K AKg 2 Aag
K AKb] (2.20)

In the limit of a large coupling constant g, the Yang–Mills formula (2.20)
becomes, using the definition of AK

ab given in formula (2.15),

lim
g→`

g21Sabg
g 5 2Aa ? Ab 3 Ag (2.21)

which equals Sabg by formula (2.19). Similarly, we can derive T ab and Ja

directly from the Yang–Mills formulas.
Both the orthogonal constraint (2.13) and the definition m 5 (2/g)m are

used when evaluating the limit in formula (2.16). Quadratic terms in the
tensor fields (AK

a, r) which are not multiplied by g in the Yang–Mills Lagran-
gian (2.14) vanish in the limit (2.16). Quartic terms multiplied by g2 sum to
zero because of the orthogonal constraint (2.13). Thus the limit in formula
(2.16) equals the Lagrangian (2.12), which contains only cubic terms in the
tensor fields (AK

a, r). These are precisely the cubic terms multiplied by g in
the Yang–Mills Lagrangian (2.14).

Note that the existence of the limit in formula (2.16) depends on the
cancellation of all quartic terms in the tensor fields (AK

a, r) in the constrained
Yang–Mills Lagrangian (2.14) since by formulas (2.14) and (2.16) and the
fact that m 5 (2/g)m precisely these quartic terms are multiplied by g2. Thus,
for general Yang–Mills Lagrangians the limit in formula (2.16) fails to exist.
In fact, for general Yang–Mills equations wave packets will not propagate
as the Yang–Mills coupling constant g becomes large. Because Yang–Mills
equations are nonlinear the mass of each plane wave generally depends on
its amplitude, which causes wave packets to lose their elementary character
due to velocity splitting, which becomes more severe as g becomes large
[18]. Furthermore, in general, unless the amplitude vanishes for each plane
wave, the mass of each plane wave becomes infinite in the limit of formula
(2.16). However, as previously shown, the Yang–Mills equation derived from
the Lagrangian (2.14) with the constraints (2.11) and (2.13) has exact plane
wave solutions in one-to-one correspondence with the plane wave solutions
of Dirac’s bispinor equation [5, 19]. The mass of each plane wave equals m,
and hence is independent of amplitude. Wave packets are identical to the
wave packets derived from Dirac’s equation and do not exhibit velocity
splitting [19]. Thus, the Euler–Lagrange equation for the constrained Yang–
Mills Lagrangian of the specific form (2.14) has solutions similar to Dirac’s
bispinor equation, which is a limiting case of it by formula (2.16).

Finally, we now present a simplification in the Yang–Mills Lagrangian
(2.14) which removes the quartic potential 1–2 g2.r.4. Note that the part of the
Lagrangian (2.14) for the scalar field r is not unique. For example, the
coupling of the U(1) gauge potential A0

a to the scalar field r, which we
henceforth denote as g0, need not equal the Yang–Mills self-coupling constant
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g in formula (2.15). Thus, we may consider instead of the Lagrangian (2.14)
the following Lagrangian without the quartic potential, for which the coupling
constants g and g0 are not necessarily equal:

Lg0 5 2
1
4g

Re[AK
ab Aab

K ] 1
1
g0

Da(r 1 m)Da(r 1 m) (2.22)

where

Da(r 1 m) 5 ­ar 1 ig0 A0
a(r 1 m) (2.23)

so that g0 couples the scalars r and m to the gauge potential A0
a. As before,

the Yang–Mills self-coupling is denoted as g, so that A0
ab and Aab are defined

exactly as in formula (2.15). Using the orthogonal constraint (2.13), and
neglecting terms which vanish in the limit (2.16), we find that formula (2.22)
equals formula (2.14) multiplied by a constant factor g21 provided that

g0 5
3
2

g, m 5
2m
g0

(2.24)

This selection of the constants g0 and m eliminates the quartic potential 1–2
g2.r.4 in the Lagrangian (2.14). Note that the argument following formula
(2.16) concerning the existence of nonlinear plane waves and wave packets
also applies to the Lagrangian (2.22), as can be deduced from previous work
[19]. We henceforth adopt the simpler Lagrangian (2.22) as the tensor form
of Dirac’s Lagrangian (2.4). Then from formulas (2.16) and (2.22), Dirac’s
bispinor Lagrangian (2.4) equals

L 5 lim
g0→`

Lg0 (2.25)

Note that the Lagrangian (2.22) can be derived from a tetrad Kaluza–
Klein model [1, 2], which explicates not only the orthogonal constraint (2.13),
but also the limit (2.25). In the tetrad Kaluza–Klein model there are three
fundamental constants m, d, and k, where m is the fermion mass, d is a length
which characterizes the size of the higher dimensions, and k is Newton’s
constant. The constants g, g0, and m are functions of k, d, and m. In particular,
the limit (2.25) is equivalent to the limit where the length d becomes vanish-
ingly small. It can be shown that d (denoted as l21 in previous work [1, 2])
equals the Planck length k1/2 divided by g3/2 and thus, in the limit required
to obtain Dirac’s equation, d is much smaller than the Planck length. Hence
the limit (2.25) has a geometric significance in the tetrad Kaluza–Klein model.

3. FIERZ IDENTITIES FOR SPINORS

Fierz identities are the bridge between bispinors and the constrained
tensors representing them [5, 16]. In this section we review the derivation
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of the spinor Fierz identity (3.13), which we generalize in Section 4 to
multiplets of 2n spinors. We also review the discrete transformation T defined
on spinors by formula (3.16), which (for a Minkowski space-time) is associ-
ated with reflection through the origin xa → xa 5 gab xb, showing in formula
(3.18) that the spinor transformation T defines the Minkowski metric gab.
Similarly in Section 4 the parity map P acting on multiplets of 2n spinors
defines the gauge metric gJK used to lower and raise gauge indices in the
Yang–Mills Lagrangian (2.22) and in the orthogonal constraint (2.13).

In previous work we called T a “parity map” for spinors and denoted
it as P, which we also used to denote the usual parity map for bispinors,
which interchanges the left and right component spinors [5, 9]. However, to
avoid confusion in this paper, we will use different notation for the discrete
transformation T acting on single spinors and the usual parity map P defined
for bispinors. In Section 4 we will see that the bispinor parity map P consists
of a gauge transformation V composed with T.

A spinor is a two-dimensional complex vector, denoted as

j 5 Fj1

j2
G P C 2 (3.1)

Acting on spinors j are the 2 3 2 complex Pauli matrices sa 5 (s0, s1, s2,
s3) defined by

s0 5 F1 0
0 1G, s1 5 F0 1

1 0G
s2 5 F0 2i

i 0 G, s3 5 F1 0
0 21G (3.2)

We define sa 5 (s0, 2s1, 2s2, 2s3) and denote s̃a 5 sa and s̃a 5 sa. A
straightforward evaluation of the Pauli matrices gives the following trace
formula:

Tr[sa s̃b] 5 2gab (3.3)

where gab denotes the Minkowski metric tensor (with diagonal elements
{1, 21, 21, 21} and zeros off the diagonal). A further trace formula is
expressed by

Tr[sa s̃d sb s̃g] 5 2Cabgd (3.4)

where, as will be seen in formula (3.13), Cabgd is a Lorentz tensor. Such a
tensor is a linear combination of gabggd, gaggbd, gadgbg, and εabgd, where εabgd

is the permutation tensor. A straightforward derivation shows that
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Cabgd 5 gaggbd 1 gadgbg 2 gabggd 2 iεabgd (3.5)

The tensor Cabgd satisfies numerous identities, chief of which are the
symmetries

Cabgd 5 Cbadg 5 Cgdab 5 Cdgba (3.6)

and the inversion formula

CabgdCgdlm 5 4dl
adm

b (3.7)

where db
a equals one if a 5 b and zero otherwise. Note that the tensor indices

a, b, g, d, l, m are lowered and raised using the Minkowski metric tensor
gab and its inverse gab, and all repeated indices are to be summed from 0 to 3.

If we set d 5 0 in formula (3.4), noting that s̃0 5 s0 5 I, where I is
the 2 3 2 identity matrix, we have

Tr[sa sb s̃g] 5 2Cabg0 (3.8)

Since the Pauli matrices sg are a basis for 2 3 2 complex matrices, the
product sa sb is a linear combination of the matrices sg. From formulas
(3.3) and (3.8), this linear combination is given by

sasb 5 C g0
absg (3.9)

By a similar argument, setting a 5 0 in formula (3.4) gives

s̃gs̃d 5 C 0b
gds̃b (3.10)

Next we consider a pair of spinors j and h to which we associate a
complex Lorentz four-vector ja, whose components are defined by the 2 3
2 matrix

j 5 2hj+ 5 Fj 0 1 j3 j1 2 ij2

j1 1 ij2 j 0 2 j3G (3.11)

where j+ 5 (j1, j2) denotes the transpose conjugate of j. (The bar denotes
ordinary complex conjugation.) The spin group of 2 3 2 complex matrices
with determinant one, denoted SL(2, C ) or Spin(1, 3), acts on the spinors j
and h. Acting on hj+ in formula (3.11), the spin group leaves invariant the
determinant of j, and hence the Minkowski norm of j a. Thus j a becomes a
Lorentz four-vector.

We can solve for j a in formula (3.11) by first noting that j 5 j bs̃b,
multiplying by sa, and then using the trace formula (3.3). This defines a
map ja: C 2 3 C 2 → C 4 mapping each pair of spinors j and h to a complex
Lorentz four-vector ja(j, h) given by
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ja(j, h) 5 j+sah (3.12)

We now derive the following Fierz identity.

Proposition 1. For all j, h, k, n P C 2,

2ja(j, h) jb(k, n) 5 C gd
ab jg(j, n) jd(k, h) (3.13)

(Note that since ja, jb, jg, and jd are Lorentz four-vectors, Cabgd is a tensor.)

Proof. From formula (3.11) we have

2hj+ 5 j a(j, h)s̃a (3.14)

Then the trace formula (3.4) gives

2ja(j, h) jb(k, n) 5 2(j+sah)(k+sbn)

5 2 Tr[sa(hk+) sb(nj+)]

5 1/2 Tr[sa s̃d sb s̃g] jg(j, n) jd(k, h)

5 Cabgd jg(j, n) jd(k, h) (3.15)

which proves formula (3.13). QED

A discrete transformation T: C 2 → C 2 sends a spinor j, as defined in
formula (3.1), to its dual conjugate j̃:

Tj 5 j̃ 5 F j2

2j1
G (3.16)

Formula (3.2) gives Tsaj 5 s̃aTj. Hence, j̃ 5 Tj transforms under the
conjugate representation of the spin group SL(2, C ). Since T 2j 5 2j, the
transformation T is a bijection. From formulas (3.11) and (3.12) we have

j a(Tj, Th) 5 ja(h, j) 5 ja(j, h) (3.17)

Setting h 5 j in formula (3.12), we see that j a 5 j a(j, j) is real. By
formula (3.17), the action of T on real Lorentz four-vectors j a becomes

j a →T
ja 5 gab j b (3.18)

That is, the discrete transformation T reverses the space components of real
Lorentz four-vectors j a. This motivates calling T a “parity map” which acts
on spinors j P C 2.

The spinor “parity map” T satisfies the following relations, which we
will use in Section 4. By formula (3.16), we have for all j, h P C 2



2646 Reifler and Morris

T 2j 5 2j

(Tj)+(Th) 5 h+j (3.19)

(Tj)+h 5 2(Th)+j

j+(Th) 5 2h+(Tj)

Also, by formulas (3.2) and (3.16) the spinor parity map T lowers and raises
the space-time index of the Pauli matrices on commutation as follows:

Tsa 5 saT (3.20)

Note that a “parity operation” can be defined for spinor fields j(xa),
which combines T with the space reflection sending the space-time point
xa P R4 to xa. However, as defined here, T: C 2 → C 2 transforms only the
spinor components j P C 2.

With the parity map T we can construct the following map s: C 2 3
C 2 → C which associates a Lorentz scalar s(j, h) to each pair of spinors j
and h:

s(j, h) 5 j+Th (3.21)

That s(j, h) is a Lorentz scalar follows from the fact that the inner product
of a spinor j and a dual spinor Th is invariant for all SL(2, C ) transformations.
Note from formulas (3.12) and (3.21) that s(j, h) 5 j0(j, Th), and hence
from formulas (3.17) and (3.19) we derive

s(j, h) 5 2s(h, j)

s(Tj, Th) 5 s(j, h) (3.22)

for all spinors j, h P C 2.

4. FIERZ IDENTITIES FOR MULTIPLETS OF 2n SPINORS

In this secton we extend the Fierz identity (3.13) for single spinors to
multiplets of 2n spinors. Using this extended Fierz identity (4.17), we then
derive the generalization of the orthogonal constraint (2.7) for 2n spinor
multiplets [see formula (4.28)]. Generalization of the orthogonal constraint
requires extending the usual parity map P which is defined for bispinors [or
spinor doublets as in formula (4.6)] to act on multiplets of 2n spinors. We
show that the extended parity maps correspond to the unitary symplectic
forms on a 2n-dimensional complex vector space, and hence form a manifold
of n(2n 2 1) real dimensions. The choice of parity map dictates which gauge
generators are associated with interactions that conserve parity. As discussed
in the introduction, to conform to observation we must choose parity maps
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which conserve parity for, and hence commute with, electromagnetic interac-
tions. This condition is not satisfied for the spinor parity map T acting, as
in formula (3,16), on each component spinor of a multiplet, whereas the
usual parity map P defined for bispinors commutes with electromagnetic
gauge transformations.

We will see also in formula (4.11) that the choice of parity map affects
the gauge metric used to lower and raise gauge indices in the Yang–Mills
Lagrangian (2.22) and in the orthogonal constraint (2.13). We will further
discuss the parity map in Section 5 when we consider the electroweak gauge
transformations of the Standard Model.

A multiplet of 2n spinors is a 4n-dimensional complex vector, denoted as

j 5 3
j(1)

?
?

j(2n)4 P C 4n (4.1)

where j(1), . . . , j(2n) P C 2 are spinors as defined in formula (3.1). Acting
on multiplets of 2n spinors j are the Pauli matrices sa, which extend to 4n
3 4n matrices by the usual direct sum representation. Also acting on j are
4n 3 4n gauge matrices tK, where K 5 0, 1, . . . , 4n2 2 1, which commute
with the Pauli matrices sa. The gauge matrix t0 5 I is the identity matrix,
which is the Hermitian generator of U(1) gauge transformations acting on j.
The gauge matrices tK with K . 0 are the Hermitian generators of SU(2n)
gauge transformations acting on j.

Since j P C4n, we have the trace of tK given by

Tr[tK] 5 4nd0K (4.2)

where dJK equals 1 if J 5 K and equals 0 otherwise. That is, for K 5 0, the
trace of the U(1) gauge matrix t0 5 I equals 4n, whereas, the SU(2n) gauge
matrices tK with K . 0 have zero trace. Since the trace can be used to define
a positive-definite inner product on the linear space of Hermitian matrices
[20], we can choose the Hermitian gauge matrices tK so that the trace formula
(4.2) extends as follows:

Tr[tJ tK] 5 4ndJK (4.3)

We shall refer to a matrix which commutes with the Pauli matrices sa

as a gauge matrix. Let V be a 4n 3 4n gauge matrix which is both unitary
and skew-symmetric, that is,

V+ 5 V21

VT 5 2V (4.4)
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V 5 2V21

where VT, V, V+, and V21 denote the transpose, complex conjugate, transpose
complex conjugate, and inverse, respectively, of the gauge matrix V . Note
that the last formula in (4.4) is a consequence of the first two, which state
that V is unitary and skew-symmetric. By formula (4.4) the gauge matrix V
can be regarded as a unitary symplectic form defined on multiplets of 2n
spinors j.

Each V can be composed with the parity map T defined in formula
(3.16) for single spinors, to obtain a parity map P 5 VT acting on multiplets
of 2n spinors j as follows:

Pj 5 VTj 5 V 3
Tj(1)

?
?

Tj(2n)4 (4.5)

where T acts on j P C 4n by the usual direct sum representation (i.e., T acts
on each spinor component of j). Note from formula (3.18) that the parity
map T transforms j a into ja. We will see a similar result in formula (4.27)
for the parity map P.

Since the unitary gauge matrices U(2n) form a Lie group of dimension
4n2 and the unitary gauge matrices which leave the symplectic form V
invariant form a subgroup SpV(n) of dimension n(2n 1 1), the homogeneous
space U(2n)/SpV(n) of unitary symplectic forms V has dimension n(2n 2 1)
5 4n2 2 n(2n 1 1). Thus, the parity maps P defined in formula (4.5) form
a manifold also of dimension n(2n 2 1).

For example, for spinor doublets (n 5 1), the parity maps P form a
one-dimensional manifold. In previous work [5] we defined a parity map P
on spinor doublets as follows:

PFj
hG 5 F Th

2TjG (4.6)

where j, h P C 2 are spinors. Other possible definitions of a parity map for
spinor doublets differ from this choice of P by a U(1) phase. Mapping spinor
doublets to bispinors, as discussed in Section 5, formula (4.6) becomes the
usual parity map P acting on bispinors.

By formula (3.19), each spinor component j(i) P C 2 of j P C 4n for 1 #
i # 2n in formula (4.5) satisfies T 2j(i) 5 2j(i). We have from formulas (3.16)
and (4.5) that PV 5 VP. Hence, using formula (4.4) together with (3.19)
and (4.5), we get for all j, h P C 4n
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P2j 5 j

(Pj)+ (Ph) 5 h+j (4.7)

(Pj)+h 5 (Ph)+j

j+(Ph) 5 h+(Pj)

Note that from the first formula in (4.7), P 5 P21 for the parity map P acting
on j P C 4n.

The Hermitian generators tK of the gauge group U(2n) acting on C 4n

satisfy trace formulas similar to the trace formulas (3.3) and (3.4) for the
Pauli matrices sa. Let t be any gauge matrix acting on C 4n. That is, t commutes
with the Pauli matrices sa, but t is not necessarily Hermitian. Define

t̃ 5 VtTV21 (4.8)

From formulas (3.16), (4.4), and (4.5), when t is Hermitian (i.e., t+ 5 t or
equivalently t 5 tT), we derive t̃ 5 PtP, and furthermore t̃ is also Hermitian.
Let us denote tK 5 t̃K. Since P 5 P21, we also have tK 5 Pt̃KP 5 PtKP 5
t̃K. Again from formulas (3.20), (4.4), and (4.5) we have

Psa 5 saP
(4.9)

PtK 5 tKP

Formula (4.3) can be written as

Tr[t J t̃K] 5 4n dJ
K (4.10)

For 4n 3 4n matrices sa and tK , we have, similar to formula (3.3),

Tr[sa s̃b] 5 4ngab
(4.11)

Tr[tJ t̃K] 5 4ngJK

which defines the gauge metric gJK. Using formulas (4.4) and (4.8) and the
invariance of trace for cyclically permuting and transposing matrices, we see
that gJK is symmetric and real (gJK 5 gKJ and gJK 5 gJK ). If we define a set
of coefficients g8JK such that tJ 5 g8JK tK, then substitution into formula (4.11)
using (4.10) shows that g8JK 5 gJK. Thus, tJ 5 gJK tK. Similarly, from formula
(4.8) we have t̃J 5 gJKt̃ K. Moreover, gJKt̃ K 5 t̃ J 5 t J shows that gJK has full
rank, and thus is nondegenerate. Hence, gauge indices J, K, L are lowered
and raised using the gauge metric gJK and its inverse g JK.

Likewise, formula (3.4) becomes

Tr[sa s̃d sb s̃g] 5 4nCabgd
(4.12)

Tr[tJ t̃M tK t̃L] 5 4 nCJKLM

which defines the tensor CJKLM.
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The 4n 3 4n matrices sa and tK commute for each index a and K.
Moreover,

Tr[sa] Tr[tK] 5 4n Tr[satK] 5 16n2d0
ad0

K (4.13)

As with sa in formulas (3.9) and (3.10), products of the gauge matrices tK

(or t̃K) can be expressed as linear combinations of the tK (or t̃K), e.g.,

t̃Lt̃M 5 C0K
LMt̃K (4.14)

From this observation and formula (4.13), if s is a product of Pauli matrices
sa and t is a product of gauge matrices tK , then

Tr[s] Tr[t] 5 4n Tr[st] (4.15)

Now consider the map jK
a: C 4n 3 C 4n → C 16n2

mapping each pair of
spinor multiplets j, h P C 4n to a set of 4n2 complex Lorentz four-vectors
jK
b(j, h), defined by

jK
b(j, h) 5 j+sb tKh (4.16)

where j+ denotes the transpose conjugate of the spinor multiplet j. We will
derive the following Fierz identity for spinor multiplets.

Proposition 2. For all j, h, k, n P C 4n,

C LM
JK j J

a(j, h) j K
b(k, n) 5 nC gd

ab j L
g(j, n) j M

d (k, h) (4.17)

Proof. The proof is similar to the proof of Proposition 1 in Section 3,
using the definition (4.16) with the trace formulas (4.11), (4.12), and (4.15).
In particular, similar to formula (3.14), we derive

(4n)hj+ 5 j bK(j, h)s̃bt̃K (4.18)

An equation similar to formula (3.15) is then obtained. The inversion formula
(3.7) is used in the final step. QED

Note that since sbtK 5 s̃bt̃K form a basis of 4n 3 4n matrices, formulas
(4.16) and (4.18) are equivalent ways, via the trace formulas (4.11) and
(4.15), to define the Lorentz four-vectors j K

b(j, h).
Applications to date use a reduced form of the Fierz identity (4.17),

which exploits an associative binary operation, denoted as ^, defined on
C 4n2

as follows. Let aK, bK, and cK be complex numbers indexed by the set
of gauge indices K 5 0, 1, . . . , 4n2 2 1. Define c 5 a ^ b if and only if

cK 5 C 0K
LM aLbM (4.19)

Since from formula (4.14), when c 5 a ^ b, we have
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(aLt̃L)(bMt̃M) 5 cKt̃K (4.20)

we see that the binary operation ^ is associative. Moreover, since tK 5 t̃K

was defined [see formula (4.3)] independently of the parity map (4.5), the
associative operation ^ is therefore independent of which parity map is
chosen.

Setting L 5 0 in the Fierz identity (4.17), we get from formula (4.19)

[ ja(j, h) ^ jb(k, n)]K 5 nC gd
ab j0

g(j, n) j K
d (k, h) (4.21)

where the Kth component of c 5 a ^ b is denoted as cK 5 [a ^ b]K. The
reduced Fierz identity (4.21) is independent of the choice of parity map (4.5).

From formulas (4.7), (4.9), and (4.16), the parity map P: C 4n → C 4n

defined by formula (4.5) transforms the Lorentz four vectors j K
a(j, h) as

follows:

j K
a(Pj, P h) 5 j a

K(h, j) 5 j a
K(j, h) (4.22)

Similar to formula (3.21), we define a map s: C 4n 3 C 4n → C mapping
each pair of spinor multiplets j and h to a complex Lorentz scalar s(j, h)
given by

s(j, h) 5 j+Ph (4.23)

That s(j, h) is a Lorentz scalar follows from the spinor map (3.21) and the
fact that P 5 VT. Note from formulas (4.16) and (4.23) that s(j, h) 5
j0
0(j, Ph), and hence from formulas (4.7) and (4.22) we derive

s(j, h) 5 s(h, j)

s(Pj, Ph) 5 s(j, h) (4.24)

for all multiplets of 2n spinors j, h P C 4n.
Let us now define a map j → ( jK

a, s) taking each multiplet of 2n spinors
j to a set of real Lorentz four-vectors jK

a for K 5 0, 1, . . . , 4n2 2 1 and a
complex Lorentz scalar s given as follows:

jK
a 5 jK

a(j, j)

s 5 s(j, j) (4.25)

Setting h 5 j in formulas (4.16) and (4.23), we see that the Lorentz four-
vectors jK

a are real, whereas the Lorentz scalar s is complex. Note that apart
from the exceptional set where s 5 0, the map j → ( jK

a, s) is a double covering
map (onto its image). Formulas (4.22) and (4.24) give

j K
a(Pj, Pj) 5 j a

K(j, j)
(4.26)

s(Pj, Pj) 5 s(j,j)

so by formula (4.25), the parity map P transforms jK
a and s as follows:
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jK
a →P

jaK 5 gab gKL jL
b

s →P
s (4.27)

The following proposition uses the parity map P together with the Fierz
identity (4.21) to show that jK

a and s satisfy an orthogonal constraint.

Proposition 3. The following orthogonal constraint is satisfied by the
jK
a and s in the image of the map j → ( jK

a, s):

jK
a jKb 5 n.s.2gab (4.28)

Proof. We will first show that

j 0
a(j,Pj) 5 sd0

a
(4.29)

j 0
a(Pj,j) 5 sd0

a

By formula (4.22), the second equation follows from the first, so it suffices
to prove the first equation of formula (4.29). Using formula (4.16), let us define

sa 5 j+saPj 5 j 0
a(j, Pj) (4.30)

Since s 5 s0 by formulas (4.23) and (4.25), it suffices to show that sa 5 0
for a 5 1, 2, 3. From formulas (4.7) and (4.9) we have

sa 5 j+ saPj 5 (saj)+Pj 5 j+Psaj 5 j+saPj 5 sa (4.31)

That is, sa 5 sa. Since the index a is lowered by the Minkowski metric, s0

is the only nonvanishing component of sa. Thus formula (4.29) is proved.
Since by formula (4.29), s and s are the only nonvanishing components

of j0
a (j, Pj) and j0

a(Pj, j), on substituting j, j, Pj, Pj for j, h, k, n, respec-
tively, in the Fierz identity (4.21) and setting K 5 0, we have, using formulas
(4.19) and (4.22),

C 00
LM jL

a jbM 5 n.s.2C 00
ab (4.32)

From formulas (4.3), (4.11), and (4.12) we derive

C 00
ab 5 C00ab 5 db

a
(4.33)

C 00
LM 5 C00LM 5 dM

L

Substituting formula (4.33) into (4.32) gives (4.28). QED

In previous work [5], it was shown that each factorization of the second-
order Klein–Gordon wave equation into a first-order Dirac equation deter-
mined a flavor parameter c P R4n2

satisfying c̃ ^ c 5 (21, 0, . . . , 0), where
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c̃K 5 cK. [For notation see formulas (4.19)–(4.21).] Defining the flavor map
t: C 4n → C 4n by t 5 2cKtK , we have from formula (4.20) that c̃ ^ c 5 (21,
0, . . . , 0) if and only if tt̃ 5 2t0 5 2I. For the case n 5 1, the usual parity
map P is defined on spinor doublets by formula (4.6), and the flavor map t by

t Fj
hG 5 F j

2hG (4.34)

where j, h P C 2 are spinors. For n . 1, the parity map P and the flavor
map t are extended in standard models to act on multiplets of 2n spinors by
the usual direct sum representation. Proposition 4 which follows generalizes
Proposition 3 using the flavor parameter cK, and Proposition 5 extends the
parity map.

Proposition 4. Let the Lorentz four-vectors jK
a for K 5 0, 1, . . . , 4n2 2

1 and scalar s be defined as in Proposition 3. Let c P R4n2
satisfying c̃ ^ c

5 (21, 0, . . . , 0) be a flavor parameter. Define

JK
a 5 [ ja ^ c̃]K (4.35)

Then JK
a and s satisfy the orthogonal constraint

JK
aJKb 5 2n.s.2gab (4.36)

Proof. Using formulas (4.19) and (4.33), we can express formula (4.32) as

[ ja ^ j̃b]0 5 n.s.2gab (4.37)

By formula (4.8) we have (tJtK)˜ 5 t̃Kt̃J , and therefore c 5 a ^ b in formula
(4.20) implies that c̃ 5 b̃ ^ c̃. Let c P R4n2

be a flavor parameter, which
satisfies c̃ ^ c 5 (21, 0, . . . , 0). Let Ja 5 ja ^ c̃ as in formula (4.35), so
that J̃a 5 c ^ j̃a. We have from formulas (4.19), (4.33), and (4.37)

JK
aJKb 5 C 00

LM J L
a J̃ M

b

5 [Ja ^ J̃b]0 5 [ ja ^ c̃ ^ c ^ j̃b]0 5 2[ ja ^ j̃b]0

5 2n.s.2gab

which proves formula (4.36). QED

Proposition 5. The parity map P transforms JK
a and s as follows:

JK
a →P

Ja
K 5 gabgKL JL

b

s →P
s (4.39)

Proof. The parity map P transforms the flavor map t 5 2cKtK into t̃ 5
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2cKt̃K 5 2c̃KtK. Thus, P transforms c into c̃. From formula (4.27), P trans-
forms ja and s into j̃a and s. Thus, P transforms Ja 5 ja ^ c̃ into K a 5 j̃a

^ c. For the Hermitian generators tK we have (tJtK)+ 5 tKtJ. Therefore, c 5
a ^ b in formula (4.20) implies that c 5 b ^ a. Noting as in the proof of
Proposition 4 that J̃a 5 c ^ j̃a, and that both c and j̃a are real, we see that
Ka 5 c ^ j̃a 5 J̃a. That is, P transforms JK

a into Ja
K, which proves formula

(4.39). QED

We end this section by noting an equivalent expression for the Lorentz
four-vectors JK

a defined by formula (4.35) in terms of the flavor map t 5
2cKtK. More generally, for j, h P C 4n define

JK
a(j, h) 5 [ ja(j, h) ^ c̃]K (4.40)

A straightforward derivation using formulas (4.14), (4.19), and (4.20) gives

JK
a(j, h) 5 2jK

a(tj, h) (4.41)

for all j, h P C 4n. In particular, when j 5 h we can define JK
a in Proposition

4 by

JK
a 5 2jK

a(tj, j) (4.42)

Note that apart from the exceptional set where s 5 0, the map
j → (JK

a, s) is a double covering map whose image contains only JK
a which

vanish except for an SU(n, n) 3 U(1) subgroup of SL(2n, C ) 3 U(1). Here,
SU(n, n) is the subgroup of SL(2n, C ) gauge transformations which leave
invariant the flavor map t regarded as a Hermitian form. This Hermitian form
occurs in the Dirac Lagrangian (5.14) for which JK

a are the SL(2n, C ) 3 U(1)
Noether currents. The reader may wish to review the case n 5 1 discussed
in detail in Section 2, noting formulas (2.9), (2.11), (4.34), and (4.42), and
the isomorphism SU(1, 1) > SL(2, R).

5. TENSOR DIRAC THEORY FOR MULTIPLETS OF n
BISPINOR FIELDS

In this section we generalize the Yang–Mills Lagrangian (2.22) to multi-
plets of n bispinor fields C 5 (C1, . . . , Cn) in a way that is consistent with
standard electroweak theory. We define a map taking C to tensor fields
(AK

a, rj), where AK
a are SL(2n, C ) 3 U(1) gauge potentials and rj are n complex

scalar fields which the electroweak gauge transformations leave invariant.
In the Standard Model the Higgs field f is subject to a strong quartic

potential, causing its equilibrium values to lie in a Goldstone manifold [9].
In formula (5.18) we will see that the Goldstone manifold can be identified
with a submanifold of the unitary symplectic forms V defined in Section 4.
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As in formula (4.5), each V defines a parity map P 5 VT, where T is the
spinor parity map (3.16). Thus, we will show that a one-to-one correspondence
exists between vacuum orientations of the Higgs field (i.e., the equilibrium
values of f) and parity maps P. Linking the Higgs field to the parity maps
P reveals that the Standard Model Higgs field has a symplectic structure, as
described by formula (5.18), which was not previously recognized.

Additional features of the tensor model are also discussed in this section.
In the Standard Model, the W and Z boson mass ratio is determined by a
fixed rotation of the electroweak gauge generators through the Weinberg
angle [9]. In this section we show that a similar process determines the
fermion mass ratios in the tensor Dirac theory. Instead of the Weinberg
rotation, we show that a fixed self-adjoint transformation of the SL(2n, C )
3 U(1) gauge generators, which restricts to a dilation on each flavor Lie
subalgebra, produces the mass ratios within a fermion multiplet.

As discussed in Section 1, field quantization requires identifying the
physically realizable solutions of the classical field equations. In the Standard
Model arbitrary superpositions of flavors within a fermion multiplet (e.g., a
superposition of electron and neutrino flavors) are not physically realizable
and hence are forbidden [9]. It can be shown that such a superselection rule
follows from the tensor theory. Based on the argument in Section 2 preceding
formula (2.22) concerning the existence of nonlinear plane waves and wave
packets, in Proposition 6 we will show that nonlinear wave packets derived
from the Yang–Mills Lagrangian (5.30) with the orthogonal constraint (5.22)
are always associated with a single fermion flavor, and hence only these
can propagate.

A bispinor C P C 4 consists of a spinor j P C 2 and a dual conjugate
spinor h̃ 5 Th P C 2 as defined in formula (3.16). That is,

C 5 F j
ThG P C 4 (5.1)

where j, h P C 2 are spinors. The charge conjugate of C is defined by

CC 5 F h
TjG (5.2)

and the Dirac matrices ga for a 5 0, 1, 2, 3 acting on C are defined by

gaC 5 FTsah
saj G (5.3)

The fifth Dirac matrix g5 acts on C by
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g5C 5 F j
2ThG (5.4)

We denote the bijective map from spinor doublets to bispinors by B: C 4 →
C 4. That is, from formula (5.1),

C 5 BFj
hG 5 F j

ThG (5.5)

From formulas (5.3) and (5.5), the parity map P defined for spinor doublets
in formula (4.6), acting on bispinors, is give by g0 5 BPB21. Similarly, the
flavor map t defined for spinor doublets in formula (4.34), acting on bispinors,
is given by g5 5 BtB21.

Let C 5 (C1, . . . , Cn) be a multiplet of n bispinors Cj , where j 5 1,
2, . . . , n. We extend formulas (5.1)–(5.5) to C by the usual direct sum
representation. In particular, the bijective map (5.5) extends to a bijective
map B: C 4n → C 4n from multiplets of 2n spinors to multiplets of n bispinors
as follows:

BFj(1)

h(1)

?
?

j(n)

h(n)

G 5 F j(1)

Th(1)

?
?

j(n)

Th(n)

G (5.6)

Equivalently, each component bispinor Cj of C 5 (C1, . . . , Cn) is defined by

Cj 5 F j(j)

Th(j)G (5.7)

where j(j), h(j) P C 2 are spinors for j 5 1, 2, . . . , n. Charge conjugation,
Dirac matrices ga, the parity map g0, and flavor map g5 are defined on the
component bispinors Cj as in formulas (5.2)–(5.4).

Standard projections pj: C 4n → C 4n for 1 # j # n map each bispinor
multiplet C 5 (C1, . . . , Cn) to a bispinor multiplet pjC, all of whose
component bispinors vanish, except for the jth, which equals Cj. That is,

pjC 5 (0, . . . , 0, Cj , 0, . . . , 0) (5.8)

The projections pj act on multiplets of 2n spinors by commutation with the
map B: C 4n → C 4n defined in formula (5.6).

In all subsequent formulas, repeated indices j 5 1, 2, . . . , n labeling
the component bispinors Cj of a bispinor multiplet C 5 (C1, . . . , Cn ,) are
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not subject to the summation convention. For such indices summation will
be indicated by a summation symbol (n

j51. The convention of summing over
repeated indices will be reserved for space-time indices a 5 0, 1, 2, 3 and
gauge indices K 5 0, 1, . . . , 4n2 2 1.

Note that acting on multiplets of 2n spinors, the projections pj commute
with the parity map P and satisfy the following relations:

o
n

j51
pj 5 I

pjpk 5 pj djk

p1
j 5 pj (5.9)

pjP 5 Ppj 5 pjPpj

pjV 5 VpT
j 5 pjVpT

j

for all 1 # j, k # n. Moreover, the projections pj also commute with the
Pauli matrices sa and the flavor map t.

We define the jth flavor subspace to be the image of the jth projection
pj: C 4n → C 4n for each 1 # j # n. We denote the parity map P restricted
to the jth flavor subspace by Pj 5 pjP. By formula (5.9), the restricted parity
map Pj can be written as Pj 5 VjT, where Vj 5 pjV is a (degenerate)
symplectic form satisfying

VT
j 5 2Vj

Vj V1
j 5 pj (5.10)

V1
j Vj 5 pT

j

By the map B: C 4n → C 4n, every real linear transformation defined for
multiplets of 2n spinors j P C 4n induces a transformation on multiplets of
n bispinors C 5 Bj. Generally, the transformations acting on j and C 5 Bj
are denoted by different symbols as shown in Table I.

Table I. Dictionary of Corresponding Spinor and Bispinor Notation

Transformation Spinor notation Bispinor notation

Pauli matrices sd ad 5 g0gd

Parity map P b 5 g0

Restricted parity maps Pj bj 5 g0pj

Flavor map t g5

Flavor generator it i
Chiral generator i ig5
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For example, using formula (3.20), the induced action of the Pauli
matrices sd on the bispinor C P C 4 defined in formula (5.1) becomes

ad C 5 F sdj
TsdhG 5 F sdj

sdThG (5.11)

so that from formula (5.3) the Dirac matrices gd satisfy

gdC 5 badC (5.12)

where b 5 g0 is the bispinor parity map.
Extending formulas (5.11) and (5.12) to bispinor multiplets allows us

to write the Dirac Lagrangian as follows:

L 5 Re[iC+ad ­dC 2 o
n

j51
mjC+bjC] (5.13)

where mj is the jth fermion mass, and bj 5 pjb is the parity map b restricted
to the jth flavor (see Table I).

Note that care must be taken with the Lagrangian (5.13) in passing from
bispinor multiplets C to 2n spinor multiplets j using formula (5.6), since the
gauge transformations i and ig5 acting on C are induced from the gauge
transformations it and i acting on j 5 B21 C. (See Table I.) Thus, the Dirac
Lagrangian (5.13) equals

L 5 Re[ij+tsd ­dj 2 o
n

j51
mjsj] (5.14)

where we define

sj 5 j+Pjj (5.15)

where Pj 5 pjP and P is the parity map. [See Table I and formulas (4.23),
(4.25), and (5.9).]

Our goal is to generalize the Yang–Mills Lagrangian (2.22) to multiplets
of n bispinor fields in a manner which is consistent with the standard electro-
weak model [9]. To construct this generalization we must consider the
SL(2n, C ) 3 U(1) gauge transformations, whose action was described on
multiplets of 2n spinors in Section 4, induced on multiplets of n bispinors
by the map (5.6).

It is straightforward to check that the generators for electroweak SU(2)
3 U(1) gauge transformations acting on multiplets of 2n spinors have zero
trace [9]. Therefore, electroweak gauge transformations form an SU(2) 3
U(1) subgroup of S(U(n) 3 U(n)) , SU(n, n). This result is easily proved
using the map B: C 4n → C 4n from multiplets of 2n spinors to multiplets of
n bispinors defined by formula (5.6).
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In particular, the chiral U(1) generator i (see Table I) has nonzero
trace, so that chiral U(1) gauge transformations are not associated with the
electroweak force. Hence, Higgs fields in the Standard Model are invariant
scalars for these chiral U(1) gauge transformations, which do not lie in S(U(n)
3 U(n)). We shall denote the SU(2) 3 U(1) electroweak gauge group as G
to avoid confusion with other subgroups of the full gauge group SL(2n, C )
3 U(1).

A parity map P acting on multiplets of 2n spinors j as in formula (4.5)
can be explicitly defined using the Higgs field f : R4 → C 2 from the standard
electroweak model, which has the form [9]

f 5 Ff1

f2
G (5.16)

In the Standard Model the Higgs field f is subject to a strong quartic potential,
causing the equilibrium values of f to lie in a hypersphere S3 , C 2 centered
at 0 P C 2. By normalizing f, we may assume that S3 is a unit sphere, so
that the Higgs field f at equilibrium satisfies

.f1.2 1 .f2.2 5 1 (5.17)

For spinor quadruplets (n 5 2) in the Standard Model, the unitary symplectic
form V defining the parity map P 5 VT in formula (4.5) becomes

V 5 3
0 f2 0 2f1

2f2 0 2f1 0
0 f1 0 f2

f1 0 2f2 0
4 (5.18)

To derive formula (5.18), first note that formula (5.18) agrees with
formula (4.6) extended to spinor quadruplets when

f 5 F0
1G (5.19)

We then obtain formula (5.18) by applying gauge transformations from G
simultaneously to formulas (5.19) and (4.6) extended to spinor quadruplets
[noting that G 5 SU(2) 3 U(1)], again using the fact that P 5 VT and that
the SU(2) part of G acts on the “left-handed” spinor components.

To make the fermion mass terms invariant under electroweak gauge
transformations, the Higgs scalars (5.16) are used as coefficients in the
standard electroweak Lagrangian as follows. First note from formula (5.18)
that the parity map P 5 VT depends linearly on the Higgs field f. The same
derivation shows that the restricted parity maps Pj 5 VjT [see Table I and
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formula (5.10)] also depend linearly on f. Thus the complex scalars sj in
formula (5.15) depend linearly on f. By construction each scalar field sj

transforms as an invariant scalar under the electroweak gauge group G. This
construction makes the standard electroweak Lagrangian (5.14) G-invariant
[9].

A straightfoward derivation shows that the JK
a defined in formula (4.42)

are the SL(2n, C ) 3 U(1) Noether currents obtained from the Lagrangian
(5.14). Furthermore, the complex scalar field s defined in formulas (4.23)
and (4.25) is from formula (5.15) equal to

s 5 o
n

j51
sj 5 j+Pj (5.20)

Similar to formula (2.10), we map a subset of SL(2n, C ) 3 U(1) gauge
potentials AK

a and complex scalar fields rj into JK
a and sj by setting

JK
a 5 4o

n

j51
.rj.2AK

a

sj 5

41on
j51 .rj.22

3/2

Zon
j51 rjZ rj (5.21)

Then the orthogonal constraint from formula (4.36) becomes

hJK AJ
a AK

b 5 2o
n

j51
.rj.2gab (5.22)

where hJK 5 n21 gJK. Apart from the exceptional set where rj 5 0 (or
equivalently sj 5 0) for all 1 # j # n, the composite map

C →B
21

j → (J K
a, sj) → (AK

a, rj) (5.23)

is a well-defined double covering map which is consistent with the orthogonal
constraint (5.22) imposed on the tensor fields (AK

a, rj), and whose image
contains only AK

a which vanish except for an SU(n, n) 3 U(1) subgroup of
SL(2n, C ) 3 U(1).

From formulas (4.39) and (5.21), the parity map P acts on the tensor
fields (AK

a, rj) as follows:

AK
a →P

Aa
K 5 gabgKL AL

b

rj →P
rj (5.24)
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Fermion masses are generated in the tensor theory by a simple transfor-
mation of the SL(2n, C ) 3 U(1) Hermitian gauge group generators tK. Recall
from formula (2.24) that for a single bispinor field, the fermion mass m 5
1–2 g0m in the Lagrangian (2.22) is proportional to the Yang–Mills coupling
constant g0. Thus, we can change the mass m to lm, where l . 0, by mapping
each SL(2, R) 3 U(1) Hermitian gauge generator tK to ltK. This changes the
Lie algebra structure constants f L

JK to lf L
JK (hence the Yang–Mills coupling

constants g and g0 become lg and lg0), without changing the gauge metric gJK.
For the general construction, let the fermion masses in the Lagrangian

(5.14) be expressed in terms of a single mass m by mj 5 ljm, where lj .
0 for 1 # j # n. We define a map L: C 4n → C 4n by

L 5 o
n

j51
!lj pj (5.25)

As with the projections pj , the map L commutes with the parity map P and
the flavor map t as well as the bispinor map B.

Instead of the map (5.23), we consider the map

C →L
21

C8 →B
21

j → (J K
a, sj) → (AK

a, rj) (5.26)

Note that the map (5.26) has no effect on the orthogonal constraint (5.22).
By the map B21 + L21, the Lagrangian (5.13) becomes

L 5 o
n

j51
Re[ilj j+tjsd ­d j 2 ml2

j sj] (5.27)

where tj 5 pjt, and, as previously defined, mj 5 ljm and sj 5 j+Pjj.
Before applying the transformation L to the Hermitian SL(2n, C ) 3

U(1) gauge generators tK , we first make a preliminary transformation of the
tK , to account for the unequal coupling constants g0 and g. By a well-known
argument, the unequal coupling constants are accounted for in Yang–Mills
theories by noting that the generators in the center of a Lie algebra can be
multiplied by the scalar g0 /g without affecting the commutation relations [9].
We define the jth flavor subgroup, denoted as Gj , of the gauge group G 5
SL(2n, C ) 3 U(1), to be the subgroup whose elements act as the identity on
all flavor subspaces except for the jth flavor subspace. Let Z be the centralizer
of the subgroup generated by the Gj for 1 # j # n. That is, each element of
Z commutes with each element of Gj for every j 5 1, . . . , n. Using the
metric hJK, we partition the generators tK into two subsets, the first containing
generators of Z and the second containing the generators orthogonal to Z.
We multiply the generators of Z by g0 /g and the generators orthogonal to Z
by unity. The full set of generators thus transformed, denoted as t̂K , when
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restricted to the flavor subgroups Gj , satisfy the same commutation relations
as tK.

In formula (5.33) we will need to know the relationship between the
traces of t̂K and tK. Since the generators orthogonal to Z lie in the Lie algebra
of SL(2n, C ), their trace is zero, so that we derive

Tr[t̂K] 5
g0

g
Tr[tK] (5.28)

The Hermitian SL(2n, C ) 3 U(1) gauge generators t̂K are transformed
by L into

t8K 5 L1t̂KL (5.29)

To simplify formulas, we define SL(2n, C ) 3 U(1) gauge generators TK 5
(i/2n)tK and T 8K 5 (i/2n)t8K. Note that both sets of generators {TK} and
{T 8K} for K 5 0, 1, . . . , 4n2 2 1 form a basis of the Lie algebra of SL(2n,
C ) 3 U(1), which can be represented by 2n 3 2n complex matrices. Hence-
forth it will simplify derivations to represent generators of the gauge group
SL(2n, C ) 3 U(1) as 2n 3 2n matrices instead of 4n 3 4n matrices [e.g.,
in the trace formula (5.33)]. The Lie algebra structure constants relative to
the two bases {TK} and {T 8K} will be denoted as f L

JK and f 8L
JK, respectively.

For the gauge group SL(2n, C ) 3 U(1) the Yang–Mills Lagrangian
(2.22) generalizes as follows:

Lg0 5 2
1
4g

Re[hJK AJ
ab AKab] 1

1
g0

o
n

j51
Dja(rj 1 m) Da

j (rj 1 m) (5.30)

where the Yang–Mills coupling constant g is used both in the field tensor
AL

ab, which is defined as

AL
ab 5 ­a AL

b 2 ­b AL
a 1 gf 8L

JK AJ
a AK

b (5.31)

and in the covariant derivatives Dja, which are defined as

Dja 5 ­a 1 gAK
aT 8jK (5.32)

where T 8jK 5 pjT 8Kpj is the projection of the generators T 8K onto the jth flavor
Lie subalgebra. Note that this definition of the covariant derivatives Dja

ensures that the Euler–Lagrange equation for the Lagrangian (5.30) with the
orthogonal constraint (5.22) commutes with each flavor restriction.

The gauge potentials AK
a and the complex scalar fields rj are defined

from the map (5.26) and formula (5.21). As previously stated, the fermion
masses in the Lagrangian (5.27) are given by mj 5 lj m. In the Lagrangian
(5.30) we define the mass parameter m by m 5 (2/g0)m.
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The gauge generators T 8K act on the complex scalars rj and m by the
well-known one-dimensional representation of the Lie algebra of SL(2n, C )
3 U(1) given by

T 8Krj 5 Tr[T 8K]rj (5.33)

and similarly for the complex scalar m. (Note that, as previously stated, the
trace is computed in the representation where T 8K is a 2n 3 2n matrix.)

By a straightforward derivation from formulas (5.25), (5.28), (5.29),
(5.32), and (5.33), the covariant derivatives Dja in the Lagrangian (5.30) act
as follows:

Dja(rj 1 m) 5 ­arj 1 ig0 o
n

j51
lj A( j)

a (rj 1 m) (5.34)

where we set

A( j)
a 5 2iAK

a Tr[pjTK] (5.35)

Note that when the map (5.26) is restricted to the jth flavor subspace
(i.e., C 5 pjC), then in formula (5.31) by first transforming to the appropriate
basis of the Lie algebra (for which the first four generators span the jth
flavor Lie subalgebra and the remaining generators are associated with gauge
potentials which vanish), and then transforming back to the generators T 8K,
we obtain the following expression for the Yang–Mills field tensor AL

ab:

AL
ab 5 ­a AL

b 2 ­b AL
a 1 glj f L

JK AJ
a AK

b (5.36)

where f L
JK are the Lie algebra structure constants relative to the gauge genera-

tors TK. Similarly, in formula (5.35) we have A( j)
a 5 A0

a and A(i)
a 5 0 for i Þ

j. Moreover, from formulas (5.15) and (5.21) we have rj 5 0 for i Þ j. Then
with both A(i)

a and ri vanishing for i Þ j, formula (5.34) gives Dia(ri 1 m)
5 0 for i Þ j. Thus, setting rj 5 r and Dja 5 Da, we find that formula
(5.34) reduces to

Da(r 1 m) 5 ­ar 1 ig0ljA0
a(r 1 m) (5.37)

Clearly in formulas (5.36) and (5.37), the Yang–Mills coupling constants g
and g0 have become glj and g0lj for the jth flavor subspace. Thus, the
Lagrangian (5.30) equals the Lagrangian (2.22) with glj and g0lj instead of
g and g0 as the Yang–Mills coupling constants. Consequently, the jth fermion
mass is mj 5 1–2 g0ljm instead of 1–2 g0m.

The following proposition generalizes formula (2.25) and its implications
for the existence of wave packets to multiplets of n bispinor fields.
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Proposition 6. The Euler–Lagrange equation for the Yang–Mills Lagran-
gian (5.30), with the orthogonal constraint (5.22), commutes with each flavor
restriction. If we restrict the fields to a single flavor, then

L 5 lim
g0→`

Lg0 (5.38)

where L and Lg0 are the Lagrangians (5.27) and (5.30), respectively. Further-
more, this limit only exists for wave packets associated with a single fermion
flavor, hence only these can propagate as g0 becomes large.

Note that the phrase “commutes with each flavor restriction” used in
the first statement of Proposition 6 means that restricting to single flavor
solutions of the Euler–Lagrange equation is equivalent to restricting the fields
in the Lagrangian to a single flavor. This implies that all respective observables
associated with the Lagrangians (5.38) are equal when restricted to physically
realizable single flavor solutions. Thus, as discussed in Section 1, the Lagran-
gians (5.38) are equivalent for quantum field theory [8].

Proof. When C is restricted to a flavor subspace [associated with the
parity map g0 and flavor map g5; see the definition of flavor subspace
following formula (5.9)], all bispinor components of C 5 (C1, . . . , Cn)
vanish except for the jth flavor component Cj. It follows from the map (5.26)
that the SL(2n, C ) 3 U(1) gauge potentials AK

a then vanish except for the
SL(2, R) 3 U(1) subset associated with the single bispinor field Cj. Inspection
of the Yang–Mills Lagrangian Lg0, the orthogonal constraint (5.22), and the
resulting Euler–Lagrange equation shows that these equations commute with
the action of setting the components of (AK

a, rj) to zero that are not associated
with Cj. Thus formula (5.38) follows from formulas (2.24), (2.25), (5.27),
(5.36), and (5.37), and the fact that j 5 pjj in formulas (5.15) and (5.20)
implies that sj 5 s and si 5 0 for i Þ j. By the argument preceding formula
(2.22), the limit (5.38) only exists for wave packets associated with a single
flavor, hence only these can propagate. QED
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